
EECS 843 - Programming Language Foundation II
Perry Alexander, palexand@ku.edu

November 22, 2022

This document describes the instruction set architecture for the
KURM09 that we will specify and verify for our final project. The
KURM09 is similar to the RISC design used in a number of architec-
ture texts, but is simpler to facilitate verification and compilation. This
is a realistic CPU description that we used for instruction in EECS 443

for many years.

The KURM09 uses a Harvard-style architecture where in-
structions and data are stored in logically separate memories. Thus, it
is impossible for an instruction read to access data memory or a data
read or write to affect instruction memory. In reality, there is only
one memory that is treated as two separate memories by a memory
controller. The word length for both data and instruction memory
is 16 bits. Although KURM09 reads and writes words, memory ad-
dresses index bytes. Table 1 shows the word in memory associated
with each address.

Word Byte
0 0 Low

1 High

1 2 Low
3 High

2 4 Low
5 High

Table 1: KURM09 memory organization.

Physical memory is accessed using byte addresses. However, both
instruction fetch and data memory operations read and write words
to memory. Thus, each memory access operates on two consecutive
bytes. Because instructions are 16 bits in length, the program counter
must be incremented by 2 to move to the next instruction. Bit 0 of
each byte is least significant while bit 7 is most significant. Similarly,
the low byte of each word is least significant and the high byte is
most significant.

There are 16 registers available separated into a set of 14 or-
thogonal, general-purpose registers (R2-R15) and 2 constant value
registers (R0-R1). R0 always contains 0 and R1 always contains 1.
Neither R0 nor R1 can be modified by any instruction. Instructions
specify register IDs using 4 bit values. Throughout this document, Rn

refers to the register ID for register n.
The program counter is an internal 16-bit register that cannot be

directly accessed by any instruction except jmpl. Every instruction in-
crements the program counter by 2 with the exception of branch (bra)
and jump (jmpl) that alter the program counter in different ways.
Throughout this document, PC refers to the program counter.

The status register is an internal 4-bit register that cannot be di-
rectly accessed by any instruction. The status register is updated
when an arithmetic or set instruction executes and is invariant other-
wise. Assuming that X and Y are the first and second operands to an



eecs 843 - programming language foundation ii 2

instruction and X ◦ Y is the result of an instruction, the status register
is updated according to table 2.

Bit Set Condition
0 X < Y
1 X = Y
2 X > Y
3 X ◦Y = 0

Table 2: Bits defining the KURM09 status
register.

KURM09 is defined by the instruction set defined in table 3.
All instructions are one word in length with the format of each in-
struction shown in table 3. The high four bits always specify the
operation while the low 12 bits specify registers, offsets, or masks,
depending on the instruction type.

Instruction Meaning Op Rs Rt Rd

add Rs,Rt,Rd Rd := Rs + Rt 0000 0-15 0-15 0-15

sub Rs,Rt,Rd Rd := Rs − Rt 0001 0-15 0-15 0-15

or Rs,Rt,Rd Rd := Rs ∨ Rt 0010 0-15 0-15 0-15

and Rs,Rt,Rd Rd := Rs ∧ Rt 0011 0-15 0-15 0-15

set Rs,Rt,msk set status∧msk 0110 0-15 0-15 0-15

bra msk,off if(msk∧ status) 6= 0 1110 0-15 off7−4 off3−0

pc := pc + off

lw Rs,Rt,off Rt := M(Rs + off) 0100 0-15 0-15 0-15

sw Rs,Rt,off M(Rs + off) := Rt 0101 0-15 0-15 0-15

jmpl Rs,Rt,o f f Rt := PC + off 0111 0-15 0-15 0-15

PC′ := Rs Table 3: KURM instruction set

Mathematical and logical operations (add, sub, and, or) operate on
three registers. Data transfer, branch and jump operations (lw, sw,
bra, jmpl) operate on two registers and a 4-bit absolute offset. The set

operation operates on two registers and a 4-bit mask.
Mathematical and logical operations treat the low 12 bits as reg-

ister identifiers. The high four bits represent Rd, the middle four Rs

and the low four Rt as specified in table 3. Addition and subtraction
(add, sub) treat the contents of Rs and Rt as 16 bit, two’s compliment
numbers. An overflow value should be generated by these instruc-
tions. Conjunction and disjunction (and, or) treat Rs, Rt and Rd as
unsigned, 16 bit values. The only addressing mode used by arith-
metic and logic operations is register direct.

The set (set) operation treats the contents of Rs and Rt as 16 bit, 2’s
compliment numbers. It performs four comparisons, Rs = Rt = 0,
Rs < Rt, Rs = Rt and Rs > Rt. The results of these comparisons
are and’ed with the 4-bit mask value and stored in the four bits of
the status registers as shown in table 4. The remaining high four bits
are set to 0. As a psuedo-arithmetic instruction, the only addressing
mode used by set is register direct.

7-4 3 2 1 0

0 Rs = Rt = 0 Rs > Rt Rs = Rt Rs < Rt
Table 4: Bit ordering in the status
register for the set instructionLoad and store (lw, sw) operations use the low 12 bits to specify

memory address, source/destination register and offset respectively.
Rs specifies the register containing a base address. Rd specifies the



eecs 843 - programming language foundation ii 3

offset and Rt specifies the destination (or source) for data being read
(or stored). Note that the only addressing mode is register indirect.
The only addressing mode used by data transfer instructions is regis-
ter indirect.

The branch (bra) instruction specifies a mask value and an 8-bit, 2’s
compliment word offset. The 4-bit mask value is bit-wise and’ed with
the low four bits of the status register. If the result is non-zero, then
the 8-bit offset is added to the program counter after converting to
a byte offset value. The mask specifies the branch type by indicating
status bits checked prior to branching. For example, “0001” specifies
branch less than; “0011” specifies branch less than or equal; “1000”
specifies branch 0; and “0101” specifies branch not equal.

The jump and link (jmpl) instruction specifies two registers and a
4-bit, 2’s compliment word offset. When called, jmpl stores the cur-
rent value of the PC plus the specified word offset value in Rt. Then,
the value in Rs is loaded into the program counter. The objective of
this instruction is to provide a branch mechanism that remembers
where it branched from. If the address of a subroutine is stored in
R15, then jmpl R15, R14, 1 jumps to the address stored in R15 and
stores the jump point plus 2 in R14. When the subroutine is ready to
return jmpl R14, Rk, 0 will return to the instruction after the call point.
The value of Rk is arbitrary as is the offset for a typical return.

Offsets for loading, storing, branching and jumping are
4 bit, 2’s compliment numbers that specify offsets in words. Be cau-
tious as you add and subtract offsets to get new program counter
values. Further realize that the length of the offset limits how far a
program can branch using the bra command.

Arithmetic, memory access, and jump commands have con-
ditional equivalents that execute only if one of the low four bits
of the status register is set. The conditional version of these instruc-
tions is specified by setting the high bit of the opcode. For example,
the add operation uses opcode “0000” while the conditional add, addc

uses opcode “1000”. If none of the low four status bits are set when a
conditional instruction executes, the instruction behaves like a no-op.
Additionally, conditional instructions do not modify the low four
bits of the status register. This will allow a multiple instructions to
operate based on the same status register contents.

The example program in figure 1 shows a simple program that
calls a subroutine adding two values twice. Memory location 0000
contains the address of a subroutine that is loaded into R15. The jmpl

instruction jumps to the address in R15 and stores the address from



eecs 843 - programming language foundation ii 4

the program counter plus 2 back into R15.
lw R15, R0, 0
jmpl R15, R15, 1
lw R8, R14, 2
sw R8, R14, 0
sw R9, R14, 1
jmpl R15, R15, 1
. . .

R15 : lw R3, R14, 0
lw R4, R14, 1
add R3, R4, R5
sw R5, R14, 2
jmpl R15, R15, 0

Figure 1: Example program calling a
subroutine twice.

In the subroutine (labeled R15 in the figure) R14 is used as a base
address for obtaining two data values. These values are loaded into
registers, added together and stored back into memory at the mem-
ory location in R14 plus 2 words. So, when the subroutine terminates,
the original arguments are located in the two words at the memory
location in R14 while the result is in the following memory loation.

The jmpl at the end of the subroutine returns to the address fol-
lowing the call site that was stored in R15. The result value from the
subroutine call is loaded into R8. This value and the value in R8 are
stored at R14 to serve as arguments to the next subroutine call.

This example exhibits how the jmpl command is used to imple-
ment subroutine calls and how a register can be used to serve as a
base address for finding arguments. Such operations are typical in
code for RISC microprocessors like KURM09. However, RISC code
like this is almost always generated by a compiler rather than writ-
ten by hand. Furthermore, registers will be used instead of memory
wherever possible to avoid the overhead associated with memory
access.


